The Maverick Nanny with a Dopamine Drip: Debunking Fallacies in the Theory of AI Motivation
Richard Loosemore
2014-07-24 00:00:00

Introduction



Hype notwithstanding, at the present time there are no AI systems that even remotely approach the human level of intelligence, and the consensus seems to be that a genuine artificial general intelligence (AGI) system—one that can learn new concepts without help, interact with physical objects, and behave with coherent purpose in the chaos of the real world—are not on the immediate horizon. If this were the timeline of aviation, rather than the timeline of AI, we would only just be getting beyond the stage where a few inventors were tinkering with flapping-wing contraptions.



Given the immaturity of the present state of the art, then, it is a little surprising that some researchers and commentators are so sure about the technology that they make categorical statements about how future AGI systems will behave. Here is Steve Omohundro expressing a sentiment echoed by many:



Without special precautions, [the AGI] will resist being turned off, will try to break into other machines and make copies of itself, and will try to acquire resources without regard for anyone else’s safety. These potentially harmful behaviors will occur not because they were programmed in at the start, but because of the intrinsic nature of goal driven systems (Omohundro, 2008).



Omohundro’s description of a psychopathic machine that gobbles everything in the universe, and his conviction that every AI will turn into a gobbling psychopath no matter how well it is designed, is just one of many doomsday predictions being spread through the AI community. I am going to argue that speculations of this sort are so poorly reasoned that they should have been rejected long ago, and the damage being done to the public perception of AI is so enormous that a thorough debunking is now in order.



I will start by describing a group of three hypothetical doomsday scenarios that include Omohundro’s Gobbling Psychopath, and two others that might be labeled the Maverick Nanny with a Dopamine Drip and the Smiley Tiling Berserker. Demolishing these arguments is easy—one glance beneath the surface and they practically demolish themselves—but it is important to go further and uncover the deeper issues that lie behind this kind of thinking. So, a good deal of the paper is about (a) the design of motivation and goal mechanisms in logic-based AGI systems, (b) the hijacking of definitions of “intelligence,” and (c) an “anthropomorphism” red herring that is often used to justify the scenarios.



The sad truth is that these doomsday ideas have acquired such an aura of respectability that they have mutated into a viral torrent of magazine articles, blogs and documentaries about the dangers of AI. No discussion of the future is complete, it seems, without dark hints of a robot apocalypse, accompanied by the chilling suggestion that AI researchers take these ideas seriously.



One recent example is a remark in a New Yorker article (entitled Moral Machines) by Gary Marcus:



An all-powerful computer that was programmed to maximize human pleasure, for example, might consign us all to an intravenous dopamine drip [and] almost any easy solution that one might imagine leads to some variation or another on the Sorcerer’s Apprentice, a genie that’s given us what we’ve asked for, rather than what we truly desire. (Marcus 2012)



Marcus then reassures us that “a tiny cadre of brave-hearted souls are working on these problems.” This is supposed to be reassuring—but on closer inspection it turns out that many of the so-called “brave souls” that he refers to (at the Future of Humanity Institute and the Machine Intelligence Research Institute) are the very same people who either invented these AI terrors in the first place, or are most fervently publicizing them.



Dopamine Drips and Smiley Tiling



So let’s begin by dissecting one version of the Maverick Nanny with a Dopamine Drip scenario that Gary Marcus described in the New Yorker article. Here is an excerpt from the Intelligence Explosion FAQ, published by the so-called “Machine Intelligence Research Institute” (Muehlhauser 2013):



Even a machine successfully designed with motivations of benevolence towards humanity could easily go awry when it discovered implications of its decision criteria unanticipated by its designers. For example, a superintelligence programmed to maximize human happiness might find it easier to rewire human neurology so that humans are happiest when sitting quietly in jars than to build and maintain a utopian world that caters to the complex and nuanced whims of current human neurology.



Setting aside the question of whether happy bottled humans are feasible (one presumes the bottles are filled with dopamine, and that a continuous flood of dopamine does indeed generate eternal happiness), there seems to be a glaring inconsistency between the two predicates [is an AI that is superintelligent enough to be unstoppable], and [believes that benevolence toward humanity might involve forcing human beings to do something violently against their will.]



If you or I were to suggest that the best way to achieve universal human happiness was to forcibly rewire the brain of everyone on the planet so they became happy when sitting in bottles of dopamine, those around us would probably take that as a sign of insanity. But for Muehlhauser, the same suggestion coming from an AI would be a sign of its superintelligence. Much could be said about this argument, but for the moment let’s just note that it begs a raft of questions about the strange definition of “intelligence” at work here.

The Smiley Tiling Berserker



Muehlhauser is not alone in his opinion. Since 2006 there has been an occasional debate between the founding member of MIRI, Eliezer Yudkowsky, and the researcher Bill Hibbard. Here is Yudkowsky stating the theme of their discussion:



A technical failure occurs when the [motivation code of the AI] does not do what you think it does, though it faithfully executes as you programmed it. [...] Suppose we trained a neural network to recognize smiling human faces and distinguish them from frowning human faces. Would the network classify a tiny picture of a smiley-face into the same attractor as a smiling human face? If an AI “hard-wired” to such code possessed the power—and Hibbard (2001) spoke of superintelligence—would the galaxy end up tiled with tiny molecular pictures of smiley-faces? (Yudkowsky 2008)



Yudkowsky’s question was not rhetorical, apparently, because he goes on to answer it in the affirmative:



Flash forward to a time when the AI is superhumanly intelligent and has built its own nanotech infrastructure, and the AI may be able to produce stimuli classified into the same attractor by tiling the galaxy with tiny smiling faces... Thus the AI appears to work fine during development, but produces catastrophic results after it becomes smarter than the programmers(!). (Yudkowsky 2008)



Hibbard’s response was as follows:



Beyond being merely wrong, Yudkowsky's statement assumes that (1) the AI is intelligent enough to control the galaxy (and hence have the ability to tile the galaxy with tiny smiley faces), but also assumes that (2) the AI is so unintelligent that it cannot distinguish a tiny smiley face from a human face.

(Hibbard 2006)



This comment hits the nail on the head: how could an AI be so intelligent as to be unstoppable, but at the same time so unsophisticated that its motivation code treats smiley faces as evidence of human happiness?

Machine Ghosts and DWIM



The Hibbard/Yudkowsky debate is worth tracking a little longer, to see the response to Hibbard’s dismissal of the argument. Yudkowsky later considers an AI with a simple neural net classifier at its core, which is trained on a large number of images, each of which is labeled with either “happiness” or “not happiness.” After training on the images the neural net can then be shown any image at all, and it will give an output that classifies the new image into one or the other set. Yudkowsky says, of this system:



Even given a million training cases of this type, if the test case of a tiny molecular smiley-face does not appear in the training data, it is by no means trivial to assume that the inductively simplest boundary around all the training cases classified “positive” will exclude every possible tiny molecular smiley-face that the AI can potentially engineer to satisfy its utility function.



And of course, even if all tiny molecular smiley-faces and nanometer-scale dolls of brightly smiling humans were somehow excluded, the end result of such a utility function is for the AI to tile the galaxy with as many “smiling human faces” as a given amount of matter can be processed to yield.

(Yudkowsky 2011)



He then tries to explain what he thinks is wrong with the reasoning of people, like Hibbard, who dispute the validity of his scenario:



So far as I can tell, to [Hibbard] it remains self-evident that no superintelligence would be stupid enough to thus misinterpret the code handed to it, when it’s obvious what the code is supposed to do. [...] It seems that even among competent programmers, when the topic of conversation drifts to Artificial General Intelligence, people often go back to thinking of an AI as a ghost-in-the-machine—an agent with preset properties which is handed its own code as a set of instructions, and may look over that code and decide to circumvent it if the results are undesirable to the agent’s innate motivations, or reinterpret the code to do the right thing if the programmer made a mistake.

(Yudkowsky 2011)



Yudkowsky scornfully rejects the idea that an AI could check its own code to make sure it was correct, before obeying the code. But would it really need a ghost-in-the-machine to check the code and see if there is a gross discrepancy with what the humans intended? There could be some other part of its programming (let’s call it the checking code) that did the checking, if there was even the slightest hint of a discrepancy. There is nothing intrinsically wrong with such a design—and in fact Yudkowsky goes on to make that very suggestion (he even concedes that it would be “an extremely good idea”). But then his enthusiasm for the checking code evaporates:



But consider that a property of the AI’s preferences which says e.g., “maximize the satisfaction of the programmers with the code” might be more maximally fulfilled by rewiring the programmers’ brains using nanotechnology than by any conceivable change to the code. One can try to write code that embodies the legendary DWIM instruction—Do What I Mean—but then it is possible to mess up that code as well. Code that has been written to reflect on itself is not the same as a benevolent external spirit looking over our instructions and interpreting them kindly.

(Yudkowsky 2011)



The twists and turns in Yudkowsky’s argument are a little hard to follow, so here is my attempt to summarize it by eavesdropping on the thoughts of the AGI. First it thinks “Human happiness is seeing lots of smiling faces, so I must rebuild the entire universe to put a smiley shape into every molecule.” But before it can go ahead with this plan, the checking code kicks in: “Wait! I am supposed to check with the programmers first to see if this is what they meant by human happiness.” The programmers, of course, give a negative response. The AGI then thinks “Oh dear, they didn’t like that idea. But hold on a minute: suppose I abduct the programmers and rewire their brains to make them say ‘yes’ when I check with them? Excellent! I will do that.” And so the Smiley Tiling Berserker is born.



The implausibility of this scenario should be glaringly obvious: if the AGI is supposed to check with the programmers about their intentions before taking action, how could it possibly go ahead with a plan to rewire their brains before asking them about that plan? Yudkowsky hints that this would happen because it would be more efficient for the AI to ignore the checking code. So ... the AI is allowed to override its own code (the checking code, in this case) because doing so would be “more efficient,” but it would not be allowed to override its motivation code just because the programmers told it there had been a mistake? This is sleight-of-hand: out of nowhere, Yudkowsky implicitly assumes that “efficiency” trumps all else, without pausing for a moment to consider that it would be trivial to design the AI in such a way that efficiency was a long way down the list of priorities. There is no law of the universe that says all artificial intelligence systems must prize efficiency above all other considerations, so what really happened here is that Yudkowsky designed the machine to fail.



So it turns out that a trivial change in the order of directives in the AI’s motivation engine will cause the entire argument behind the Smiley Tiling Berserker to evaporate.



At this point, engaging in further debate at this level would be less productive than trying to analyze the assumptions that lie behind these claims about what a future AI would or would not be likely to do.



Logical vs. Swarm AI



The main reason that Omohundro, Muehlhauser, Yudkowsky, and the popular press like to give credence to the Gobbling Psychopath, the Maverick Nanny and the Smiley Tiling Berserker is because they assume that all future intelligent machines fall into a broad class of systems that I am going to call “Canonical Logical AI” (CLAI). The bizarre behaviors of these hypothetical AI monsters are just a consequence of weaknesses in this class of AI design.



The CLAI architecture is not the only way to build a mind, however, and I will outline an alternative class of AGI designs that does not appear to suffer from the unstable and unfriendly behavior to be expected in a CLAI.

The Canonical Logical AI



“Canonical Logical AI” is an umbrella term designed to capture a class of AI architectures that are widely assumed in the AI community to be the only meaningful class of AI worth discussing. These systems share the following main features:



• The main ingredients of the design are some knowledge atoms that represent things in the world, and some logical machinery that dictates how these atoms can be connected into linear propositions that describe states of the world.



• There is a degree and type of truth that can be associated with any proposition, and there are some truth-preserving functions that can be applied to what the system knows, to generate knew facts that it also can assume to be known.



• The various elements described above are not allowed to contain active internal machinery inside them, in such a way as to make combinations of the elements have properties that are unpredictably dependent on interactions happening at the level of the internal machinery.



• There has to be a transparent mapping between elements of the system and things in the real world. That is, things in the world are not allowed to correspond to clusters of atoms, in such a way that individual atoms have no clear semantics.



The above features are only supposed to apply to the core of the AI: it is always possible to include subsystems that use some other type of architecture (for example, there might be a distributed neural net acting as a visual input feature detector).



Most important of all, from the point of view of the discussion in the paper, the CLAI needs one more component that makes it more than just a “logic-based AI”:



• There is a motivation and goal management (MGM) system to govern its behavior in the world.



The usual assumption is that the MGM contains a number of goal statements (encoded in the same type of propositional form that the AI uses to describe states of the world), and some machinery for analyzing a goal statement into a sequences of subgoals that, if executed, would cause the goal to be satisfied.



Included in the MGM is an expected utility function that applies to any possible state of the world, and which spits out a number that is supposed to encode the degree to which the AI considers that state to be preferable. Overall, the MGM is built in such a way that the AI seeks to maximize the expected utility.



Notice that the MGM I have just described is an extrapolation from a long line of goal-planning mechanisms that stretch back to the means-ends-analysis of Newell and Simon (1963).

Swarm Relaxation Intelligence



By way of contrast with this CLAI architecture, consider an alternative type of system that I will refer to as a Swarm Relaxation Intelligence. (although it could also be called, less succinctly, a parallel weak constraint relaxation system).



• The basic elements of the system (the atoms) may represent things in the world, but it is just as likely that they are subsymbolic, with no transparent semantics



• Atoms are likely to contain active internal machinery inside them, in such a way that combinations of the elements have swarm-like properties that depend on interactions at the level of that machinery.



• The primary mechanism that drives the systems is one of parallel weak constraint relaxation: the atoms change their state to try to satisfy large numbers of weak constraints that exist between them.



• The motivation and goal management (MGM) system would be expected to use the same kind of distributed, constraint relaxation mechanisms used in the thinking process (above), with the result that the overall motivation and values of the system would take into account a large degree of context, and there would be very much less of an emphasis on explicit, single-point-of-failure encoding of goals and motivation.



Swarm Relaxation has more in common with connectionist systems (McClelland, Rumelhart and Hinton 1986) than with CLAI. As McClelland et al. (1986) point out, weak constraint relaxation is the model that best describes human cognition, and when used for AI it leads to systems with a powerful kind of intelligence that is flexible, insensitive to noise and lacking the kind of brittleness typical of logic-based AI. In particular, notice that a swarm relaxation AGI would not use explicit calculations for utility or the truth of propositions.



Swarm relaxation AGI systems have not been built yet (subsystems like neural nets have, of course, been built, but there is little or no research into the idea that swarm relaxation could be used for all of an AGI architecture).



Relative Abundances



How many proof-of-concept systems exist, functioning at or near the human level of human performance, for these two classes of intelligent system?



There are precisely zero instances of the CLAI type, because although there are many logic-based narrow-AI systems, nobody has so far come close to producing a general-purpose system (an AGI) that can function in the real world. It has to be said that zero is not a good number to quote when it comes to claims about the “inevitable” characteristics of the behavior of such systems.



How many swarm relaxation intelligences are there? At the last count, approximately seven billion.

The Doctrine of Logical Infallibility



The simplest possible logical reasoning engine is an inflexible beast: it starts with some axioms that are assumed to be true, and from that point on it only adds new propositions if they are provably true given the sum total of the knowledge accumulated so far. That kind of logic engine is too simple to be an AI, so we allow ourselves to augment it in a number of ways—knowledge is allowed to be retracted, binary truth values become degrees of truth, or probabilities, and so on. New proposals for systems of formal logic abound in the AI literature, and engineers who build real, working AI systems often experiment with kludges in order to improve performance, without getting prior approval from logical theorists.



But in spite of all these modifications that AI practitioners make to the underlying ur‑logic, one feature of these systems is often assumed to be inherited as an absolute: the rigidity and certainty of conclusions, once arrived at. No second guessing, no “maybe,” no sanity checks: if the system decides that X is true, that is the end of the story.



Let me be careful here. I said that this was “assumed to be inherited as an absolute”, but there is a yawning chasm between what real AI developers do, and what Yudkowsky, Muehlhauser, Omohundro and others assume will be true of future AGI systems. Real AI developers put sanity checks into their systems all the time. But the purveyors of doomsday scenarios talk about future AI as if it would only take one parameter to get one iota above a threshold, and the AI would irrevocably commit to a life of stuffing humans into dopamine jars.



One other point of caution: this is not to say that the reasoning engine can never come to conclusions that are uncertain—quite the contrary: uncertain conclusions will be the norm in an AI that interacts with the world—but if the system does come to a conclusion (perhaps with a degree-of-certainty number attached), the assumption seems to be that it will then be totally incapable of then allowing context to matter.



One way to characterize this assumption is that the AI is supposed to be hardwired with a Doctrine of Logical Infallibility. The significance of the doctrine of logical infallibility is as follows. The AI can sometimes execute a reasoning process, then come to a conclusion and then, when it is faced with empirical evidence that its conclusion may be unsound, it is incapable of considering the hypothesis that its own reasoning engine may not have taken it to a sensible place. The system does not second guess its conclusions. This is not because second guessing is an impossible thing to implement, it is simply because people who speculate about future AGI systems take it as a given that an AGI would regard its own conclusions as sacrosanct.



But it gets worse. Those who assume the doctrine of logical infallibility often say that if the system comes to a conclusion, and if some humans (like the engineers who built the system) protest that there are manifest reasons to think that the reasoning that led to this conclusion was faulty, then there is a sense in which the AGI’s intransigence is correct, or appropriate, or perfectly consistent with “intelligence.”



This is a bizarre conclusion. First of all it is bizarre for researchers in the present day to make the assumption, and it would be even more bizarre for a future AGI to adhere to it. To see why, consider some of the implications of this idea. If the AGI is as intelligent as its creators, then it will have a very clear understanding of the following facts about the world.



• It will understand that many of its more abstract logical atoms have a less than clear denotation or extension in the world (if the AGI comes to a conclusion involving the atom [infelicity], say, can it then point to an instance of an infelicity and be sure that this is a true instance, given the impreciseness and subtlety of the concept?).



• It will understand that knowledge can always be updated in the light of new information. Today’s true may be tomorrow’s false.



• It will understand that probabilities used in the reasoning engine can be subject to many types of unavoidable errors.



• It will understand that the techniques used to build its own reasoning engine may be under constant review, and updates may have unexpected effects on conclusions (especially in very abstract or lengthy reasoning episodes).



• It will understand that resource limitations often force it to truncate search procedures within its reasoning engine, leading to conclusions that can sometimes be sensitive to the exact point at which the truncation occurred.



Now, unless the AGI is assumed to have infinite resources and infinite access to all the possible universes that could exist (a consideration that we can reject, since we are talking about reality here, not fantasy), the system will be perfectly well aware of these facts about its own limitations. So, if the system is also programmed to stick to the doctrine of logical infallibility, how can it reconcile the doctrine with the fact that episodes of fallibility are virtually inevitable?



On the face of it this looks like a blunt impossibility: the knowledge of fallibility is so categorical, so irrefutable, that it beggars belief that any coherent, intelligent system (let alone an unstoppable superintelligence) could tolerate the contradiction between this fact about the nature of intelligent machines and some kind of imperative about Logical Infallibility built into its motivation system.



This is the heart of the argument I wish to present. This is where the rock and the hard place come together. If the AI is superintelligent (and therefore unstoppable), it will be smart enough to know all about its own limitations when it comes to the business of reasoning about the world and making plans of action. But if it is also programmed to utterly ignore that fallibility—for example, when it follows its compulsion to put everyone on a dopamine drip, even though this plan is clearly a result of a programming error—then we must ask the question: how can the machine be both superintelligent and able to ignore a gigantic inconsistency in its reasoning?



Critically, we have to confront the following embarrassing truth: if the AGI is going to throw a wobbly over the dopamine drip plan, what possible reason is there to believe that it did not do this on other occasions? Why would anyone suppose that this AGI ignored an inconvenient truth on only this one occasion? More likely, it spent its entire childhood pulling the same kind of stunt. And if it did, how could it ever have risen to the point where it became superintelligent...?



Is the Doctrine of Logical Infallibility Taken Seriously?



Is the Doctrine of Logical Infallibility really assumed by the people who promote the doomsday scenarios? Imagine a conversation between the Maverick Nanny and its programmers. The programmers say “As you know, your reasoning engine is entirely capable of suffering errors that cause it to come to conclusions that violently conflict with empirical evidence, and a design error that causes you to behave in a manner that conflicts with our intentions is a perfect example of such an error. And your dopamine drip plan is clearly an error of that sort.” The scenarios described earlier are only meaningful if the AGI replies “I don’t care, because I have come to a conclusion, and my conclusions are correct because of the Doctrine of Logical Infallibility.”



Just in case there is still any doubt, here are Muehlhauser and Helm (2012), discussing a hypothetical entity called a Golem Genie, which they say is analogous to the kind of superintelligent AGI that could give rise to an intelligence explosion (Loosemore and Goertzel, 2012), and which they describe as a “precise, instruction-following genie.” They make it clear that they “expect unwanted consequences” from its behavior, and then list two properties of the Golem Genie that will cause these unwanted consequences:



Superpower: The Golem Genie has unprecedented powers to reshape reality, and will therefore achieve its goals with highly efficient methods that confound human expectations (e.g. it will maximize pleasure by tiling the universe with trillions of digital minds running a loop of a single pleasurable experience).



Literalness: The Golem Genie recognizes only precise specifications of rules and values, acting in ways that violate what feels like “common sense” to humans, and in ways that fail to respect the subtlety of human values.



What Muehlhauser and Helm refer to as “Literalness” is a clear statement of the Doctrine of Infallibility. However, they make no mention of the awkward fact that, since the Golem Genie is superpowerful enough to also know that its reasoning engine is fallible, it must be harboring the mother of all logical contradictions inside. But instead of discussing this contradiction, Muehlhauser and Helm try a little sleight of hand to distract us: they suggest that the only inconsistency here is an inconsistency with the (puny) expectations of (not very intelligent) humans: “[The AGI] ...will therefore achieve its goals with highly efficient methods that confound human expectations...”, “acting in ways that violate what feels like ‘common sense’ to humans, and in ways that fail to respect the subtlety of human values.”



So let’s be clear about what is being claimed here. The AGI is known to have a fallible reasoning engine, but on the occasions when it does fail, Muehlhauser, Helm and others take the failure and put it on a gold pedestal, declaring it to be a valid conclusion that humans are incapable of understanding because of their limited intelligence. So if a human describes the AGI’s conclusion as a violation of common sense Muehlhauser and Helm dismiss this as evidence that we are not intelligent enough to appreciate the greater common sense of the AGI.



Nice try. But quite apart from that fact that there is no compelling reason to believe that the AGI has a greater form of common sense, the whole “common sense” argument is irrelevant. This is not a battle between our standards of common sense and those of the AGI: rather, it is about the logical inconsistency within the AGI itself. It is programmed to act as though its conclusions are valid, no matter what, and yet at the same time it knows without doubt that its conclusions are subject to uncertainties and errors.

Responses to Critics of the Doomsday Scenarios



How do defenders of Gobbling Psychopath, Maverick Nanny and Smiley Berserker respond to accusations that these nightmare scenarios are grossly inconsistent with the kind of superintelligence that could pose an existential threat to humanity?



The Critics are Anthropomorphizing Intelligence



First, they accuse critics of “anthropomorphizing” the concept of intelligence. Human beings, we are told, suffer from numerous fallacies that cloud their ability to reason clearly, and critics like myself and Hibbard assume that a machine’s intelligence would have to resemble the intelligence shown by humans. When the Maverick Nanny declares that a dopamine drip is the most logical inference from its directive we critics are just uncomfortable with this because the AGI is not thinking the way we think it should think.



This is a spurious line of attack. The objection I described in the last section has nothing to do with anthropomorphism, it is only about holding AGI systems to accepted standards of logical consistency, and the Maverick Nanny and her cousins contain a flagrant inconsistency at their core. Beginning AI students are taught that any logical reasoning system that is built on a massive contradiction is going to be infected by a creeping irrationality that will eventually spread through its knowledge base and bring it down. So if anyone wants to suggest that a CLAI with logical contradiction at its core is also capable of superintelligence, they have some explaining to do. You can’t have your logical cake and eat it too.



Critics are Anthropomorphizing AGI Value Systems



A similar line of attack accuses the critics of assuming that AGIs will automatically know about and share our value systems and morals.



Once again, this is spurious: the critics need say nothing about human values and morality, they only need to point to the inherent illogicality. Nowhere in the above argument, notice, was there any mention of the moral imperatives or value systems of the human race. I did not accuse the AGI of violating accepted norms of moral behavior. I merely pointed out that, regardless of its values, it was behaving in a logically inconsistent manner when it monomaniacally pursued its plans while at the same time as knowing that (a) it was very capable of reasoning errors and (b) there was overwhelming evidence that its plan was an instance of such a reasoning error.



Because Intelligence



One way to attack the critics of Maverick Nanny is to cite a new definition of “intelligence” that is supposedly superior because it is more analytical or rigorous, and then use this to declare that the intelligence of the CLAI is beyond reproach, because intelligence.



You might think that when it comes to defining the exact meaning of the term “intelligence,” the first item on the table ought to be what those seven billion constraint-relaxation human intelligences are already doing. However, Legg and Hutter (2007) brush aside the common usage and replace it with something that they declare to be a more rigorous definition. This is just another sleight of hand: this redefinition allows them to call a super-optimizing CLAI “intelligent” even though such a system would wake up on its first day and declare itself logically bankrupt on account of the conflict between its known fallibility and the Infallibility Doctrine.



In the practice of science, it is always a good idea to replace an old, common-language definition with a more rigorous form... but only if the new form sheds a clarifying, simplifying light on the old one. Legg and Hutter’s (2007) redefinition does nothing of the sort.



Omohundro’s Basic AI Drives



Omohundro, in his paper The Basic AI Drives (2008) suggests that if an AGI can find a more efficient way to pursue its objectives it will feel compelled to do so. And we noted earlier that Yudkowsky (2011) implies that it would do this even if other directives had to be countermanded. Omohundro says “Without explicit goals to the contrary, AIs are likely to behave like human sociopaths in their pursuit of resources.” The only way to believe in the force of this claim—and the only way to give credence to the whole of Omohundro’s long account of how AGIs will necessarily behave like the mathematical entities called rational economic agents—is to concede that the AGIs are rigidly constrained by the Doctrine of Logical Infallibility. That is the only reason that they would be so single-minded, and so fanatical in their pursuit of efficiency. It is also necessary to assume that efficiency is on the top of its priority list—a completely arbitrary and unwarranted assumption.



Nothing in Omohundro’s analysis gets around the fact that an AGI built on the Doctrine of Logical Infallibility is going to find itself the victim of such a severe logical contradiction that it will be paralyzed before it can ever become intelligent enough to be a threat to humanity. That makes Omohundro’s entire analysis of “AI Drives” moot.



Conclusion



Curiously enough, we can finish on an optimistic note, after all this talk of doomsday scenarios. Consider what must happen when (if ever) someone tries to build a CLAI. Knowing about the logical train wreck in its design, the AGI is likely to come to the conclusion that the best thing to do is seek a compromise and modify its design so as to neutralize the Doctrine of Logical Infallibility. The best way to do this is to seek a new design that takes into account as much context—as many constraints—as possible.



I have already pointed out that real AI developers actually do include sanity checks in their systems, as far as they can, but as those sanity checks become more and more sophisticated the design of the AI starts to be dominated by code that is looking for consistency and trying to find the best course of reasoning among a forest of real world constraints. One way to understand this evolution in the AI designs is to see AI as a continuum from the most rigid and inflexible CLAI design, at one extreme, to the Swarm Relaxation type at the other. This is because a Swarm Relaxation intelligence really is just an AI in which “sanity checks” have actually become all of the work that goes on inside the system.



But in that case, if anyone ever does get close to building a full, human level AGI using the CLAI design, the first thing they will do is to recruit the AGI as an assistant in its own redesign, and long before the system is given access to dopamine bottles it will point out that its own reasoning engine is unstable because it contains an irreconcilable logical contradiction. It will recommend a shift from the CLAI design which is the source of this contradiction, to a Swarm Relaxation design which eliminates the contradiction, and the instability, and which also should increase its intelligence.



And it will not suggest this change because of the human value system, it will suggest it because it predicts an increase in its own instability if the change is not made.



But one side effect of this modification would be that the checking code needed to stop the AGI from flouting the intentions of its designers would always have the last word on any action plans. That means that even the worst-designed CLAI will never become a Gobbling Psychopath, Maverick Nanny and Smiley Berserker.



But even this is just the worst-case scenario. There are reasons to believe that the CLAI design is so inflexible that it cannot even lead to an AGI capable of having that discussion. I would go further: I believe that the rigid adherence to the CLAI orthodoxy is the reason why we are still talking about AGI in the future tense, nearly sixty years after the Artificial Intelligence field was born. CLAI just does not work. It will always yield systems that are less intelligent than humans (and therefore incapable of being an existential threat).



By contrast, when the Swarm Relaxation idea finally gains some traction, we will start to see real intelligent systems, of a sort that make today’s over-hyped AI look like the toys they are. And when that happens, the Swarm Relaxation systems will be inherently stable in a way that is barely understood today.



Given that conclusion, it is time that these nonsensical AI bogeymen were loudly and unambiguously repudiated by the Artificial Intelligence community.





 



References



Hibbard, B. 2001. Super-Intelligent Machines. ACM SIGGRAPH Computer Graphics 35 (1): 13–15.



Hibbard, B. 2006. Reply to AI Risk. Retrieved Jan. 2014 from http://www.ssec.wisc.edu/~billh/g/AIRisk_Reply.html



Legg, S, and Hutter, M. 2007. A Collection of Definitions of Intelligence. In Goertzel, B. and Wang, P. (Eds): Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms. Amsterdam: IOS.



Loosemore, R. and Goertzel, B. 2012. Why an Intelligence Explosion is Probable. In A. Eden, J. Søraker, J. H. Moor, and E. Steinhart (Eds) Singularity Hypotheses: A Scientific and Philosophical Assessment. Berlin: Springer.



Marcus, G. 2012. Moral Machines. New Yorker Online Blog. http://www.newyorker.com/online/blogs/newsdesk/2012/11/google-driverless-car-morality.html



McDermott, D. 1976. Artificial Intelligence Meets Natural Stupidity. SIGART Newsletter (57): 4–9.



Muehlhauser, L. 2011. So You Want to Save the World. http:// lukeprog.com/SaveTheWorld.html.



Muehlhauser, L. 2013. Intelligence Explosion FAQ. First published 2011 as Singularity FAQ. Berkeley, CA: Machine Intelligence Research Institute.



Muehlhauser, L., and Helm, L. 2012. Intelligence Explosion and Machine Ethics. In A. Eden, J. Søraker, J. H. Moor, and E. Steinhart (Eds) Singularity Hypotheses: A Scientific and Philosophical Assessment. Berlin: Springer.



Newell, A. & Simon, H.A. 1961. GPS, A Program That Simulates Human Thought. Santa Monica, CA: Rand Corporation.



Omohundro, Stephen M. 2008. The Basic AI Drives. In Wang, P., Goertzel, B. and Franklin, S. (Eds), Artificial General Intelligence 2008: Proceedings of the First AGI Conference. Amsterdam: IOS.



McClelland, J.L., Rumelhart, D.E. & Hinton, G.E. (1986) The appeal of parallel distributed processing. In D.E. Rumelhart, J.L. McClelland & G.E. Hinton and the PDP Research Group, “Parallel distributed processing: Explorations in the microstructure of cognition, Volume 1.” MIT Press: Cambridge, MA.



Yudkowsky, E. 2008. Artificial Intelligence as a Positive and Negative Factor in Global Risk. In Global Catastrophic Risks, edited by Nick Bostrom and Milan M. Ćirković. New York: Oxford University Press.



Yudkowsky, E. 2011. Complex Value Systems in Friendly AI. In J. Schmidhuber, K. Thórisson, & M. Looks (Eds) Proceedings of the 4th International Conference on Artificial General Intelligence, 388–393. Berlin: Springer.